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ABSTRACT

Subgraph counting is a fundamental task in network analysis. Typi-
cally, algorithmic work is on total counting, where we wish to count
the total frequency of a (small) pattern subgraph in a large input
data set. But many applications require local counts (also called ver-
tex orbit counts) wherein, for every vertex v of the input graph, one
needs the count of the pattern subgraph involving v. This provides
a rich set of vertex features that can be used in machine learn-
ing tasks, especially classification and clustering. But getting local
counts is extremely challenging. Even the easier problem of getting
total counts has received much research attention. Local counts
require algorithms that get much finer grained information, and the
sheer output size makes it difficult to design scalable algorithms.

We present EVOKE, a scalable algorithm that can determine
vertex orbits counts for all 5-vertex pattern subgraphs. In other
words, EVOKE exactly determines, for every vertex v of the input
graph and every 5-vertex subgraph H, the number of copies of
H that v participates in. EVOKE can process graphs with tens of
millions of edges, within an hour on a commodity machine. EVOKE
is typically hundreds of times faster than previous state of the
art algorithms, and gets results on datasets beyond the reach of
previous methods.

Theoretically, we generalize a recent “graph cutting” framework
to get vertex orbit counts. This framework generate a collection
of polynomial equations relating vertex orbit counts of larger sub-
graphs to those of smaller subgraphs. EVOKE carefully exploits the
structure among these equations to rapidly count. We prove and
empirically validate that EVOKE only has a small constant factor
overhead over the best (total) 5-vertex subgraph counter.
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1 INTRODUCTION

One of the most important algorithmic techniques in network anal-
ysis is subgraph counting, also referred to as motif counting or
graphlet analysis. Subgraph counting is basically the problem of
counting the frequency of small pattern subgraphs in a large input
graph. These techniques have found applications in bioinformatics
and biological networks [21, 31, 32], social networks [17, 26, 39, 40,
44], community and dense subgraph detection [8, 36, 42, 43], social
sciences [11, 13, 20, 30], and many other applications [5, 7, 16, 18, 46].
(Refer to the tutorial [37] for more details on applications.)

Let G denote the input graph, that we wish to analyze. While the
typical description of subgraph counting asks for the total count
of a pattern subgraph in G, many applications require local counts.
(These are also referred to as graphlet distributions, orbit counts, or
k-profiles.) For a given set of patterns, the aim is to find, for every
vertex v of G, the number of patterns that v participates in. This is
a much finer grained description of the graph, and can be used to
generate features for vertices. A compelling application of these
local counts are the graphlet kernel, where local counts are used
to construct vector representations of vertices for machine learn-
ing [38]. In many applications (documented in §1.3), one typically
wants local counts for all pattern subgraphs of up to a given size.

Subgraph counting is an extremely challenging problem. As
shown in previous work, even for a moderate graph with a few
million edges, counts of (say) 5-vertex pattern subgraphs can be
in the order of billions to trillions [6, 22, 29]. This combinatorial
explosion is often tamed by clever counting methods that avoid
enumeration, but these are tailored to global counts in G. There has
been recent work on randomized methods for local counting, but
these require large parallel hardware even for graphs with tens of
millions of edges [15].

1.1 Problem Description

The input G = (V, E) is a simple, undirected graph. Our aim is to
get local counts, for every vertex in G, for all the patterns given in
Fig. 2. Fig. 2 shows all connected subgraphs with at most 5 vertices.
We will refer to these as patterns. (We do not focus on disconnected
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pattems; results in [29] imply that these can be easily determined
from connected subgraph counts.) Within each pattern, vertices
are present in different “roles” or erbits. In some patterns like the
5-cycle {(His) and 5-clique (Hazg), there is just one orbit. In contrast,
Hip has four different orbits, indicated by the different colors. Thus,
a vertex of G can participate in a copy of Hyp in four different ways,
and we wish to determine all of these four different counts. We
delay the exact formalism of orbits to §2. But hopefully, Fig. 2 gives
a clear pictorial representation of the 73 different orbits, mumbered
individually.

Our aim is to design an algorithm that: for every vertex vin V
and every orbit #, exactly outputs the number of times that v occurs
in a copy of & Thus, the output is a set of 73| V| counts. {Technically,
we ask for induced counts, but can also get non-induced counts.
Details in §2.) For example, the count of orbit 17 is the number
of times that v is the middle of a 4-path, while the count of orbit
15 is the number of 4-paths that start/end at v. Analogously, the
count of orbit 34 is the munber of 5-cycles that v participates in. For
a fixed orbit, we refer to these numbers as the vertex orbit counts
{VOCs). Collectively {over all orbits), we wish to determine VOCs for
all 5-vertex subgraphs. For convenience, we refer to this as simply
5-V0OCs. We refer to the total subgraph count as “global” counts,
which is clearly a much easier problem.

As can be seen, the desired output is an immensely rich local
description of the vertices of G. This output subsumes a number
of recent subgraph counting problems in the data mining commu-
nity [6, 14, 15, 29].

Main challenges: To the best of our knowledge, there is no
algorithm that {even approximately) computes all 5-VOCs even for
graphs with tens of millions of edges. Results on global counting
are much faster, but it is not clear how to implement these ideas
for VOCs [6, 29]. The ORCA package is the only algorithm that
actually computes all 5-VOCs, but it does not terminate after days
for graphs with tens of millions of edges. We give more details of
previous work in §1.3.

From a mathematical standpoint, the challenge is to get all 5-
VOCs without an expensive enumeration. The total number of orbit
counts is easily in the order of trillions, and a fast algorithm should
ideally avoid touching each 5-vertex subgraph in G. On the other
hand, VOCs are an extremely fine-grained statistic, so purely global
methods do not work.

1.2 Main Contributions

Our primary result is the Efficient Vertex Orbit pacKagE (EVOKE},
an algorithm to compute all 5-VOCs.

Practical local counting: EVOKE advances the state of the art
of subgraph counting. It i{s the first algorithm that can feasibly
obtain all 5-VOCs on graphs with tens of millions of edges. We
do comprehensive tests on many public data sets. We observe that
EVOKE gets counts on graphs with millions of edges in just minutes,
and on graphs with tens of millions of edges within an hour. This is
on a single commodity machine with 64GB memory, without any
parallelization. In contrast, for the larger instances, the previous
state of the art DRCA package takes more than two days or runs
out of memory, on a more powerful machine (384GB RAM). Even
on instances where ORCA terminates, EVOKE is about a hundred
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Figure 1: Runtime speedup for computing all 5-VOCs achieved
by EVOKE over ORCA (computed as runtime of ORCA/runtime of
EVOKE}. Graphs are sorted by increasing number of edges from left
to right. For the blue bars, ORCA ran out of memory or did not ter-
minate after 1000 times the EVOKE running time. EVOKE is signif-
icantly faster than ORCA, and makes 5-VOC counting feasible for
large graphs.

times faster. We show the speedup of EVOKE over ORCA in Fig. 1.
EVOKE is also able to get 5-VOCs in a social network with 100M
edges, in less than two days. (ORCA runs of out memory in such
instances.} All the blue bars in Fig. 1 denote instances where ORCA
runs of out of memory {in two days) or is a thousand times slower
than EVOKE.

EVOKE has a large number of independent sub-algorithms. It
is straightforward to run them in parallel, and we get about a
factor two speedup. We do not consider this a significant novelty
of EVOKE, but it does allow for an even faster running time.

Local counting without enumeration: Our work builds on
the ESCAPE framework of Pinar-Seshadhri-Vishal [29]. One of their
main insights is a combination of graph orientations and a “pattern
cutting” technique. Larger patterns are carefully cut into smaller
patterns. It {s then shown that local counts of smaller patterns
can be combined into global {total) counts of larger patterns. We
formally prove that, for the orbits in Fig. 2, one can generalize
their method to VOCs. This is mathematically quite technical and
requires manipulations of various pattern automorphisms {which is
not required for total counts). But the final result is a large collection
of polynomial formulas to compute individual VOCs through some
specialized local counts of smaller subgraphs. EVOKE exploits the
structure among these formulas to count all VOCs efficiently.

Somewhat surprisingly, we mathematically prove that the run-
ning time is only a constant factor more than that of ESCAPE {which
only computes total counts). This is borne out empirically where
the running time of EVOKE is typically twice that of ESCAPE. Our
result demonstrates the power of the cutting framework introduced
in [29].

Fast computation of orbit frequency distributions: The dis-
tribution of VOCs is a useful tool in graph analysis, often called
graphlet degree distribution in bioinformatics [31]. EVOKE makes it
feasible to compute these distributions over real data. As a small
demonstration of EVOKE, we observe interesting behavior in VOCs
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Figure 2: All vertex orbits for 5-vertex patterns. Within any pattern, vertices of the same color form an orbit.

across graphs from different domains. Also, the VOCs of differ-
ent orbits within the same pattern behave differently, showing the
importance of getting such fine-grained information.

On 4-VOCs: We do not consider this as a new contribution, but
a salient observation for those interested in subgraph counting.
EVOKE determines all 4-VOCs as a preprocessing step, based on
ideas in [29] and Ortmann-Brandes [27]. As stated in these results,
the key insight is an implementation of an old algorithm of Chiba-
Nishizeki for 4-cycle counting [12]. This method is incredibly fast,
and computes 4-VOCs in minutes. (Even for the largest instance
of more than 100M edges, it took less than an hour.) For example,
for a LiveJournal social network with 42M edges, EVOKE took ten
minutes on a commodity machine (we got the same time even on a
laptop). Contrast this with previous results for counting 4-VOCs
for the same graph, which used a MapReduce cluster [15]. (We note
that EVOKE, and the other results, are technically computing edge
orbit counts, a more general problem.)

1.3 Related Work

Subgraph counting is an immensely rich area of study, and we
refer the reader to a tutorial for more details [37]. Here, we only
document results relevant to our problem. For this reason, we do
not discuss the extremely large body of work on triangle counting
(the most basic subgraph counting problem).

Vertex orbit counts beyond triangles have found significant uses
in network analysis and machine learning. Notably, Shervashidze-
Vishwanathan-Petri-Mehlhorn-Borgwardt defined the graphlet ker-
nel, that uses vertex orbits counts to get embeddings of vertices
in a network [38]. Ugander-Backstrom-Kleinberg showed that 4-
vertex orbit counts can be used for role discovery and distinguish-
ing different types of graph neighborhoods [44]. In an exciting re-
cent use of orbit counts, Rotabi-Kamath-Kleinberg-Sharma showed
that four and five cycle counts can be used for weak tie discovery
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in the Twitter network [35]. Yin-Benson-Leskovec have defined
higher-order clustering coefficients, which are ratios of specific or-
bit counts [48, 49]. There is a line of work on the surprising benefits
of using cycle and clique counts as vertex or edge weights, to find
denser and more relevant communities in networks [8, 9, 36, 42, 43].

We now discuss the literature on algorithms for subgraph count-
ing. Ahmed-Neville-Rossi-Duffield gave the first algorithm that
could count (total) 4-vertex subgraph counts for graphs with mil-
lions of edges [6]. Their PGD package was a significant improve-
ment over past practical work for this problem [18]. Pinar-Seshadhri-
Vishal designed the ESCAPE algorithm for practical (total) 5-vertex
subgraph counting [29]. While these algorithms employed many
clever combinatorial ideas, they did not focus on vertex orbit count-
ing. There was concurrent development of sampling algorithms
that are orders of magnitude faster, such as path-sampling [22] and
the MOSS package [45].

Elenberg-Shanmugam-Borokhovich-Dimakis gave algorithms
for 3, 4-vertex orbit counting [14, 15]. They employed a randomized
algorithm, and proved convergence through polynomial concentra-
tion inequalities. The number of samples required for concentration
was large, and they used Map-Reduce clusters to process graphs
with tens of millions of edges. It was observed implicitly in the ES-
CAPE package and explicitly, by Ortmann-Brandes [27] that ideas
from a classic result of Chiba-Nishizeki [12] gave a faster, exact
algorithm for 4-vertex orbits.

The state of the art for local counting of 5-vertex orbits is the
ORCA package of Hoc¢evar-Demsar [19]. The algorithm is based
on a method to build sets of linear equations relating various orbit
counts. This saves computing all orbit counts independently. With
some careful choices, ORCA tries to perform enumeration on the
“easier” counts, and get the “harder” counts through the linear equa-
tions. There were also results on generating these linear equations
auotmatically [24, 25]. We note that ORCA also has algorithms
to generate 5-edge orbit counts, but this takes even longer than
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5-VOCs. We leave the generalization of EVOKE to edge orbit counts
as future work.

Rossi-Ahmed-Carranza-Arbour-Rao-Kim-Koh proposed a par-
allel algorithm for counting typed graphlets (subgraph patterns),
which are a generalization of subgraph patterns to heterogeneous
networks [34].

2 PRELIMINARIES

The input is an undirected simple graph G = (V, E), with n vertices
and m edges. The patterns of interest are all connected subgraphs
with at most 5 vertices, denoted Hy, ..., Ha9, as shown in Fig. 2.
Previous results in [29] show that disconnected pattern counts can
be determined by inclusion-exclusion from all connected pattern
counts. Hence, we only focus on connected pattern subgraphs.

We now formally define orbits. The definitions below are taken
from Bondy and Murty (Chapter 1, Section 2) [10].

DEFN. 1. Fix labeled graph H = (V(H), E(H)). An automorphism
is a bijection o : V(H) — V(H) such that (u,v) is in E(H) iff
(o(u), o(v)) is in E(H).

Define an equivalence relation among V(H) as follows. We say
thatu ~ v (u,v € V(H)) iff there exists an automorphism that maps
u tov. The equivalence classes of the relation are called orbits.

Fig. 2 shows the 73 different orbits. Within any H;, all vertices
in an orbit are colored the same. For example, in Hyg, there are
two different orbits (blue and red). The blue (resp. red) vertices
can be mapped to each other by automorphisms, and are therefore
“equivalent”.

Technically, we denote orbits as pairs (H, S), where H is a (la-
beled) pattern subgraph and S is the subset of vertices forming the
orbit. Consider pattern H and orbit 8 = (H, S). We denote:

e orb(H): The set of orbits in the pattern H.
e s7(0): |S|, the number of vertices in the orbit 6.

Induced vs non-induced: A non-induced subgraph is obtained
by taking a subset of edges. An induced subgraph is obtained
by taking a subset of vertices and considering all edges and non-
edges among them. (A clique contains all non-induced subgraphs
of smaller sizes, but the only induced subgraphs it contains are
smaller cliques.) A theorem in [29] proves that the vector of non-
induced subgraph (up to a given size) counts can be converted to
the corresponding induced counts, through a linear transformation.
A directed generalization of the arguments holds for k-VOCs, in
that non-induced orbit counts (for each vertex) can be converted to
induced orbit counts by a linear transformation. For space reasons,
we omit details and give the proof in the full version [28]. It is a
small linear transformation of the 73-dimensional orbit count for
each vertex, and is efficient to do on all vertices.

EVOKE computes both non-induced and induced counts. Algo-
rithmically, it is easier to compute non-induced counts first; hence
we shall only refer to them in the technical description.

We are ready to define VOCs.

DEFN. 2. Fix an orbit 6 = (H,S) and a vertexv € V (in the input
graph G). A match of 0 involving v is a non-induced copy of H in G
such that v is mapped to a vertex in S. Call two matches equivalent, if
one can be obtained from the other by applying an automorphism. We
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Figure 3: Fundamental patterns enumerated for orbit counting

define DM(v, 6) to be the number of distinct matches of 0 involving
.

Our aim is to compute the entire list of numbers {UM(v, 0)},
over all v € V and all 6 in Fig. 2.

Degree ordering: We will use the degree orientation, a funda-
mental tool for subgraph counting that was pioneered by Chiba-
Nishizeki [12]. We will convert G into an DAG G as follows. Let
< denote the degree ordering of G. For vertices i, j, we say i < j, if
either d(i) < d(j) or d(i) = d(j) and i < j (ties broken by vertex id).
The DAG G is obtained by orienting the edges with respect to
< ordering. In both the algorithm and analysis, all references to
directed structures are with respect to G

Notation for subgraph counts: In formulas for orbit counts,
we will use the following notation. We use d(v) for the degree of
vertex v. We will use W(G), D(G), DP(G™), and DBP(G™) for the
total count of wedges, diamonds, directed 3-paths, and directed
bipyramids respectively. These subgraphs are shown in Fig. 3.

2.1 Main theorem

THEOREM 3. There is an algorithm for exactly counting all VOCs
for orbits 0-72, whose running time is O(W(G) + D(G) + DP(G™) +
DBP(G™”)+ m+n).

This theorem is analogous to that of ESCAPE ([29]) which gives
the same asymptotic running time for just total counting of 5-vertex
subgraphs. We consider it quite significant that one gets the same
asymptotic running time, despite the output being much larger
and far more fine-grained. We stress that the EVOKE algorithm is
significantly different than ESCAPE, since the orbit counts behave
differently from total subgraph counts. The final proof is long and
technical, so we will only provide the high-level ideas here and
leave the final proof to the full version [28]. !

3 MAIN IDEAS

EVOKE builds off the ideas in ESCAPE for total subgraph counts.
First, we explain difficulties in directly applying previous tech-
niques.

Pattern cutting: Intuitively, a 5-vertex pattern can be “cut” into
smaller patterns that can be explicitly enumerated. An enumeration
over these smaller patterns can then be used to get a subgraph count.
As an example, consider the 4-path (Hy). By cutting at the center
(green) vertex, one gets two wedges. Thus, we can basically square
the number of wedges that end at a vertex, and then sum this to
get the total number of 4-paths. (Not quite, there is some inclusion-
exclusion required to “correct” this count, but it is fairly easy to

The full version is available at https://arxiv.org/abs/1911.10616
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work out.) But this fails for orbit counting. The 4-path has three
distinct orbits, and the idea above only works for the green orbit.

This is even more problematic for patterns like Ha1, Has, Ho7,
Hag, where the removal of certain vertices does not “cut” the pattern
into convenient smaller pieces. The main insight in ESCAPE was
that all 5-vertex patterns have a convenient cutset of vertices, whose
removal leads to fragments that can be easily enumerated. This
is not true for orbits. We do have the freedom of choosing the
convenient cutset.

From 4-edge orbit counts to 5-VOCs: Our main insight is
that the suitable generalization of the pattern cutting approach
connects 5-VOCs to 4-edge orbit counts. We essentially prove that
nearly all the orbit counts in Fig. 2 for a vertex v can be related
(by non-trivial polynomial equations) to the edge orbits counts (of
4-vertex subgraphs) on edges incident to v. The edge orbits of 4-
vertex subgraphs are given in Fig. 5b. These edge orbits counts can
be obtained by implementations of the Chiba-Nishizeki clique and
4-cycle counter [12], with extra inclusion-exclusion tricks to get all
counts. EVOKE uses this as a preprocessing step.

Careful indexing during enumeration: Even with the previ-
ous ideas, we still need an efficient implementation that can gener-
ate all the counts. We design a collection of vertex and edge indexed
data structures, that are updated by an enumeration of the patterns
shown in Fig. 3. Somewhat surprisingly, we show that as these pat-
terns are enumerated, one can quickly update these data structures
and generate all the orbit counts. This leads to Theorem 3. The
final proof is quite technical and has many parts (due to the large
number of orbits).

4 THE CUTTING FRAMEWORK FOR ORBITS

In this section, we describe the cutting framework for orbits. As
mentioned earlier, this is a generalization of ideas in [29].

First, we formally define a match, which is a non-induced copy
of H. For a set C where C C V(H), we use H|c to denote the
subgraph of H induced on C. We also denote the remaining graph
after removing C from H, by H \ C.

DEFN. 4. Amatch ofH inG is a bijectionz : T — V(H) whereT C
V and for any two verticest; andty inT, (11, t2) € E if (n(t1), n(t2)) €
E(H).

DEFN. 5. Fix an orbit 0 = (H,S) and a vertexv € V. We define
M (v, ) to be the set of all (not necessarily distinct) matches w : T —
V(H) of H, where T C V, such thatv € T and n(v) € S. We use
M(v, 0) to denote | M(v, 0)|.

DEFN. 6. For any orbit 6 = (H,S) we define A = (H, i), where i is
a vertex in S, as a representative of 6.
We use r(6) to denote its representative (H, j), where j is the vertex
with the smallest id in S.

Let A = (H, i) be a representative of an orbit . Abusing notation,
for a vertex v € V, we use M(v, 1) to denote the set of matches
7 € M(v, 0) where n(v) = i. Analogously, we use M(v, 1) to show
[M(v, A)|. We can see that M(v, ) = sz(8)-M(v, A). Next, we define
fragments in H, which are the result of cutting H using a cut set.

DEFN. 7. Let H be a subgraph pattern and consider a non-trivial
cut set C C V(H). Let S1,Sa, . . . be connected components of H \ C.
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The fragments of H obtained by removing C are the subgraphs of H
induced by CU S1,C U Sy, . ... We denote the set of these fragments
by Frag-(H).

A partial match 7 : T — V(H) is similar to a match, except that
it is an injection, and is not surjective, thus |T| < |V(H)|.

DEFN. 8. A match n : T — V(H) extends a partial match o :
T’ — V(H) if T’ c T and for any vertex t in T, n(t) = o(t). We
denote the number of matches m of H that extend o, by degy ().

Consider a match o of H|c. For o to extend to a match of H,
it is sufficient that it extends to disjoint matches of all fragments
in Frag~(H). Merging these extensions leads to a match of H. If
extension of ¢ to these fragments are not disjoint, merging them
leads to a match of a different pattern H’, which we call a shrinkage.

DEFN. 9. Let H, H' be subgraph patterns, C C V(H) be a cut set
of H, and Frag-(H) = {F1,Fa, ... ’FIFmgc(H)I}‘ Lett:H|c — H’
be a partial match of H'. For each F; € Frag-(H), let rr; : F; — H’
be a partial match of H' in H that extends t. We call {r, m1, 72, . . .,
”IFmgC(H)I} a C-shrinkage of H into H' if for each edge (s,t) €
E(H’), there exists an edge (a,b) in fragment F; € Frag-(H) such
that mj(a) = s and mj(b) = t.

We use Shrinkc(H) to denote the set of patterns (up to isomorphism)
H’, to which there exist at least a C-shrinkage from H.

DEFN. 10. Consider graph H, H' € Shrinkc(H), A = (H, i), and
A = (H',j). We define numShc(A, A”) to be the number of distinct
C-shrinkages of H into H' where 7(i) = j.

LEMMA 11. Consider a pettern H, an orbit 0 = (H, S), a represen-
tative A = (H, i) of 0, and a cut set C in H such that i € C. Then,
M(v, M) =
oceM(v,(H|c,1)) FeFrag (H)
- > > numShc(2, 1) - DM(v, V')

H’eShrinkc(H) 0’ corb(H'),
X=r(0)

degp(o)

Proor. Consider any match o of H|c in M(v, (H|c, i)), and all
sets of maps {m1, .. "”IFragc(H)l} where 7y is a copy of Fp €
Frag~(H) that extends 0. The number of such sets is exactly:

degp(o) (1)
ceM(v,(H|c,i)) FeFragC(H)

Consider one of these sets of maps {my,..., ”\Fragc(H)l}’ let
V(rp) be the set of vertices that 7, maps to Fp. If all V(rp) \ V(C)
are disjoint, we get a match in M(v, 1). Therefore, Each match
of H in M(v, A) is counted exactly one time in (1). But for each
orbit 8’ = (H’,S’) where H’ € Shrinkc(H), we have also counted
some matches in M(v, 6”). The number of distinct matches of 6’
involving v is DM(v, 8”). Let A’ = (H’, j) be r(6”). The number of
distinct C-shrinkages of H into H’, where (i) = j, is numSh¢ (4, A”).
Thus, per each orbit §’, we have counted numSh¢ (4, 1”) - DM(v, 1”)
matches which should now be subtracted from (1).

The reason we considered only distinct matches of A’ involving
v is that the shrinkage from H to H’ gives us the labeling of H’ and
the set of maps {n1, ..., 7 |Frag,.(H)| }, which resulted in counting
this match, dictates the match. Also, notice that the shrinkage
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Figure 4: Application of Lemma 11 for vertex orbit 26

determines the vertex in H’ that v is mapped to. That is why we
consider number of shrinkages for a representative of 6”. O

COROLLARY 12. As mentioned, M(v, 0) = sz(0)- M(v, A). Therefore,
we can derive DM(v, 0), which is the number of distinct matches of 9,
as follows: DM(v, 0) = sz(0) - M(v, A)/|Aut(H)|.

Application of Lemma 11 for vertex orbit 26: We will show
how this lemma works applying it to Hj2 and computing VOCs
for a vertex v € V. Let 02 = (H,S), where S = {2,3} and H is as
shown in Fig. 4, denote orbit 26. Let the representative Az¢ be (H, 2).

Let triangle {1, 2, 3} be the cut set C. So, Frag~(H) = {F1, F2} as
we can see in Fig. 4. Let A= (H|c, 2) be a representative of orbit
3 (the only orbit in the cut set). Every triangle in G incident to
v is a match in M(v, A). Each such triangle has two mappings to
H|c. consider triangle {u, v, w} in G. Vertex v has to be matched
to vertex 2, therefore one match (A) is o(u) = 1, o(v) = 2, and
o(w) = 3, and the other match (B) is o(u) = 3, o(v) = 2, and
o(w) = 1. For match (A), degp, (0) - degp, (o) = (d(v) —2)(d(w) - 2),
and degp, (o) - degp, (o) = (d(v) — 2)(d(u) — 2) for match (B).

The only possible shrinkage of H is to a diamond H’, as shown in
Fig. 4. Let orbit 613 = (H’,S’), where S” = {2, 3}, show orbit 13. We
can see that in any C-shrinkage of H into H’, 7(2) € §’. Let Ay3 =
(H’, 2) be a representative of 613. Notice that numSh (A6, 113) = 2.
In one case we set 7(1) = 1, 7(2) = 2, 7(3) = 3, 711(4) = 4, and
m2(5) = 4. In the other case, we set 7(1) = 4, 7(2) = 2, 7(3) = 3,
1(4) = 1, and m3(5) = 1. The set of maps {r, 71, 72} in both cases
forms a C-shrinkage of H into H” where 7(2) = 2.

2

t=(u,v,w) triangle
+(d(w) = 2))] — 2 - DM(v, A13) (@)

Note that sz(626) = 2 and H has two automorphisms, so (by
Corollary 12) DM(v, f26) = M(v, A) -

M(v, Az6) = [(d(v) = 2)((d(u) - 2)

5 GETTING ORBIT COUNTS

Given space constraints, it is not possible to describe EVOKE com-
pletely or give a full proof of Theorem 3. Formally, there is a collec-
tion of more than fifty equations similar to (2). For each of them,
we verify that they can be computed through an enumeration of
the patterns in Fig. 3, assuming that all edge orbits of Fig. 5b are
available. We leave these (tedious) details to the full version [28],
and give a few examples here.

Getting edge orbit counts of 4-vertex subgraphs: There are
eleven edge orbits for 4-vertex subgraphs as shown in Fig. 5b. For-
mally, one can prove the following. (Actually, one can get a much
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better running time, but this is not important for our main theorem.
Details in full version. [28]) For an edge (u, v), we use E;(u, v) to
denote the count of the ith edge orbit (where i is from Fig. 5b).

THEOREM 13. All vertex and edge orbit counts for 4-vertex patterns
can be obtained in time O(W(G) + D(G) + m + n).

Getting VOCs: We demonstrate the main ideas through a num-
ber of examples.

Orbit 26: The pattern cutting framework gives (2). We can pre-
compute and store degrees at all vertices. During an enumeration
of all triangles, one can compute the summand for each triangle.
The triangles can be enumerated in O(W(G)) time (indeed, it can be
done even faster using orientations). Orbit 13 belongs to a 4-vertex
pattern, so DM(2, 113) is obtained from Theorem 13.

Orbit 37: let A37 = r(637) and A12 = r(0;12), then

DM(u, A37) = ) [Es(u,0)(d(v) - 2)] -~ 2DM(u, A12).
veN(u)

®)

After storing Es-values on each edge, one can get this VOC by a
triangle enumeration. Orbit 12 belongs to a 4-vertex pattern.

Overall, this technique can analogously handle all orbits, barring
5-cycle and 5-clique (each of which as a single orbit). 5-cliques can
be directly enumerated in time O(DBP(G™)), a consequence of the
classic Chiba-Nishizeki algorithm [12] and explicitly proven in [29].

Dealing with 5-cycles: This special case is handled in the fol-
lowing theorem, which gives a significant strengthening of the
5-cycle counter in ESCAPE, which only gave a global count in the
same running time.

THEOREM 14. Vertex orbit counts for the 5-cycle can be computed
in time O(W(G) + DP(G™) + m + n).

Proor. As shown in Fig. 5a, there are three different 5-cycle
DAGs up to isomorphism, and each has exactly one directed 3-path,
such that the remaining wedge is not an in-in wedge. In Fig. 5a, this
directed 3-path is labeled i, j, k, [, and w is the center vertex of the
wedge. By a directed wedge enumeration, we can precompute the
number of such wedges between all pairs of vertices. We enumerate
over the directed 3-paths: for every directed 3-path we get between
vertices i and [, we already know the number of relevant directed
wedges between i and [. This allows us to increment the orbit
counts for vertices i, j, k, [, by the number of wedges. (There is some
inclusion-exclusion to fix the count; details in the full version [28].)

This process does not update the orbit count for vertex w. Let
P(i, ) be the number of directed 3-paths from i to I. To compute the
orbit counts for vertex w, we enumerate in-out and out-out wedges
between i and [, and add P(i, ]) to the orbit count of vertex w. Again,
there is a possible inclusion-exclusion error to be fixed, since the 3-
paths (corresponding to P(i, [)) potentially intersect with the wedge
under consideration. We need to subtract out the counts of specific
directed tailed triangles (Details in full version [28].) Overall, we
can get VOCs for 5-cycle in the stated time.

O

6 EXPERIMENTAL RESULTS

We implement EVOKE in C++. We ran experiments on a commodity
machine from AWS EC2: R5d.2xlarge, which has Intel Xeon Plat-
inum 8175M CPU @ 2.50GHz with 4 cores and 1024K L2 cache (per
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Figure 5: (a) All different 5-cycle DAGs up to isomorphism. (b) All edge orbits of 4-vertex patterns.

core), 34MB L3 cache, and 64GB memory. For running EVOKE on
the com-orkut graph (117M edges), we used the more powerful
R5d.12xlarge EC2 instance (with 384GB RAM). We actually run
ORCA for 5-vertex patterns on the larger machine for any instance
with more than 1M edges. The EVOKE package is available at [2]
as open source code.

We used large graph datasets from the Network Repository [33],
SNAP [23], and Citation Network Dataset [1, 41]. We removed
directions from edges, and omitted duplicates and self loops. Tab. 1
includes the number of nodes, edges, and triangles for all the graphs
we used. We also run EVOKE on wiki-en-cat, a bipartite graph
from the KONECT network repository [3, 4, 47].

As mentioned earlier, we compare our results with ORCA [19]
which is the state of the art algorithm for computing all 5-VOCs.
The runtimes of ESCAPE, EVOKE, and ORCA is given in Tab. 1. We
also state the time for just counting 4-VOCs. When we do not report
a time for ORCA, it implies that either ORCA ran out of memory or
ran more than 1000 times the EVOKE running time. In all the results,
the time includes the I/O, so we account for the time required to
print the (large) output into files. As mentioned later, there is a
parallel implementation of EVOKE, but all run times reported are
of the sequential implementation (to have a fair comparison with
ORCA).

Running time of EVOKE: As seen in Tab. 1, for many instances
of counting 5-VOCs, we simply cannot get results with ORCA.
For all graphs larger than web-google-dir, ORCA-5 runs out of
memory even on the more powerful EC2 instance, or was stopped
after a thousand times the corresponding EVOKE running time has
passed (shown by blue bars in Fig. 1). When ORCA does give results,
the speedup of EVOKE is easily in the orders of hundreds. Fig. 1
gives the speedup as a chart. EVOKE makes 5-VOCs computation
feasible, for graphs with tens of millions of edges. ORCA is unable to
process any graph in that size range. Even for the large com-orkut
graph with over 100M edges, EVOKE gets all counts in two days.

As an aside, for counting 4-VOCs, EVOKE runs typically in min-
utes, consistent with previous work [27, 29].

Comparison with ESCAPE: Theorem 3 shows that the asymp-
totic upper bound given for ESCAPE in [29] is also an asymptotic
upper bound for EVOKE run time. We are able to validate this in
practice. Fig. 6a shows the ratio of runtime of EVOKE over ESCAPE
for 5-vertex patterns. Note that ESCAPE counts subgraphs and
EVOKE computes orbit counts for orbits in those subgraphs. As we
can see in Fig. 6a, in all our experiments the ratio is typically below
2 and never more than 4. We believe this finding to be significant,
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since obtaining the richer information of 5-VOCs is just as feasible
as getting exact total counts.

Runtime distribution and parallel speedup: Typically, a few
orbits take the lion’s share of the running time. Fig. 6b shows the
split-up of running time over the various orbits. We group them
into four classes: the 5-clique, the 5-cycle, the orbits of Hys and Hay
(these require diamond enumerations), and everything else. By and
large, just the 5-cycle and 5-clique orbits account for half the time.

It is straightforward to parallelize the computation of these dif-
ferent groups. For the non-induced setting, these are simply inde-
pendent computations. We perform this parallelism, and present
the speedup we achieve in Fig. 6¢c. As expected, there is roughly a
1.5-2 factor speedup, corresponding to the most expensive orbit to
compute.

VOC distributions: As a demonstration of EVOKE, we plot the
VOC distribution (also called graphlet degree distribution) of var-
ious graphs. To get cleaner figures, we plot the Complementary
Cumulative Distribution (CCD): for x, we plot the fraction of ver-
tices whose orbit count is at least x. This is plotted for Orbit 70 (in
induced 5-clique minus edge) in Fig. 7a and for Orbit 17 (center of
induced 4-path) in Fig. 7b. We stress that these induced counts are
typically harder to obtain than the non-induced counts.

For Orbit 17, we observe that the largest count is more than
trillions, showing the challenges in exact counting. Also the dis-
tribution of tech-as-skitter has a bigger dropoff in the tail,
which may be indicative of the path structures in AS networks.
The web-google-dir graph has a sharp dropoft at the end as well.
We see that Orbit 70 distributions are quite different over the graphs,
unlike Orbit 17, where the tails are similar for three of the graphs.
The counts in Citation-network V2 are much smaller, suggesting
there are not many 5-cliques missing edges.

In Fig. 7c, for the graph web-google-dir, we plot the VOC of
the three different orbits (15-17) of the induced 4-path. Observe
how the distribution for Orbit 15 (the start/end) is significantly
different from Orbit 17 (the center), underscoring the fine-grained
information that orbits provide over vanilla counts.

Graph mining through orbit counts: As another demonstra-
tion, we focus on the citation network DBLP-Citation-network
V5, where we have metadata associated with vertices (papers). We
found that the paper with the largest count of Orbit 17 (center of
induced 4-path) is the classic book “C4.5: Programs for Machine
Learning” by Ross Quinlan. On the other hand, the paper partic-
ipating in the most 5-cliques is the highly cited VLDB 94 paper
“Fast Algorithms for Mining Association Rules in Large Databases”
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Table 1: Properties of the graphs and runtime of ESCAPE, EVOKE, and ORCA

Runtimes in seconds
Diataset [sorted by increasing | E ) Ll |E| |7 ESC~+ EVOKE«4 ORCA- ESC-5  EVOKE-S  ORCA-S
soc-brightkite 56.7K 213K 404k 043 {59 1wy 4.69 T 56254
ia-email-EU-di 265K 364k 267K {49 129 938 591 1318 1736
tech-RL-caida 191K BTE 455K {168 129 20949 4.65 1003 59544
Citation-networck W1 217K B31EK 248K {69 257 4291 289 §.93 27515
ca-coauthors-dblp SHIE 1.52i4 i 26681 28789 5107 20.69K 26.91K 171326
DELP-Citation-network V5 4HIE 206 1.38m 259 1018 1304 1917 40,76 292K
Citation-network W2 2118 .02 1.9 411 1157 2542 3278 69.36 T.52K
wiki-en-cat 2040 380 1 313 1261 11431 2285 &6.58 -
web-google-dic i1 4320 134 476 10403 4544 45,86 488 To.3TE
web-wiki-ch-internal 1,93 .95 18190 30.11 6545 655.15 1.22K 187K -
tech-as-skitter 1.690 1.1 28.8M 2591 BE.25 G527 46 #53.21 1.4k -
web-hudong 1,98 1443 2161 48.20 G563 178K 241K 3.45K -
web-baidi-baike 2. 14 1701 25.2m bla 148.11 202K 266k 4 27K -
tech-ip 2.25m 2164 2.3 G203 2TTET Ta96k 18, 14K 40.57K -
soc-Live]ournal 1 <. 550 42 850 285.73M 40107 59943 130K 28 46K 36.57K -
com-orkut 3 11715 627 .58 123K 2ITE TATE 137 73K 1a3.a1K -
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Figure 6: Empirical analysis of EVOKE runtime
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Figure 7: (a), (b): VOCs comp. cum. distribution (CCD) of orbits. For count x, we plot the fraction of vertices with orbit count at
least x. (c) For web-google-dir, we plot the VOC CCD for all orbits of the 4-path. Observe that the distributions for the start/end
(orbit 15) and the center (orbit 17) behave differently.

by Agarwal and Srikant.It {s interesting that the orbit counts can ACKNOWLEDGMENTS

immediately give us semantically significant vertices. We thank Akul Goyal for helpful discussions and his help on veri-
fying the correctness of the output of the EVOKE package.

454



Technical Presentation

REFERENCES

[10]
[11]

[12]
[13]

[14

=
)

[16]
[17]
[18]
[19]
[20]

[21]

Citation network dataset. Available at https://aminer.org/citation.

Evoke. https://bitbucket.org/nojan-p/orbit-counting.

The koblenz network collection. Available at http://konect.uni-koblenz.de/.
Wikipedia (en) network dataset - KONECT, Oct. 2016.

AGRAWAL, M., ZITNIK, M., AND LESKOVEC, J. Large-scale analysis of disease
pathways in the human interactome. In Pacific Symposium on Biocomputing
(2018), vol. 23, World Scientific, p. 111.

AHMED, N. K., NEVILLE, J., Ross1, R. A., AND DUFFIELD, N. Efficient graphlet
counting for large networks. In Proceedings of International Conference on Data
Mining (ICDM) (2015).

BeccHETTL L., BoLpy, P., CasTiLLo, C., AND GIONIs, A. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In Conference on
Knowledge Data and Discovery (KDD) (2008), pp. 16—-24.

BENSON, A, GLEICH, D. F., AND LESKOVEC, . Higher-order organization of complex
networks. Science 353, 6295 (2016), 163-166.

BERRY, J. W., HENDRICKSON, B., LAVIOLETTE, R. A., AND PHiLLIPS, C. A. Tolerating
the community detection resolution limit with edge weighting. Phys. Rev. E 83
(May 2011), 056119.

BoNDY, J., AND MURTY, U. Graph theory (2008). Grad. Texts in Math (2008).
BurrT, R. Structural holes and good ideas. American Journal of Sociology 110, 2
(2004), 349-399.

CuiBa, N, AND Nr1sHIzEKI, T. Arboricity and subgraph listing algorithms. SIAM
9. Comput. 14 (1985), 210-223.

COLEMAN, J. Social capital in the creation of human capital. American Journal of
Sociology 94 (1988), S95-S120.

ELENBERG, E. R, SHANMUGAM, K., BOROKHOVICH, M., AND DIMAKIS, A. G. Beyond
triangles: A distributed framework for estimating 3-profiles of large graphs. In
Conference on Knowledge Data and Discovery (KDD) (2015), pp. 229-238.
ELENBERG, E. R.,, SHANMUGAM, K., BOROKHOVICH, M., AND DIMAKIS, A. G. Dis-
tributed estimation of graph 4-profiles. In The Web Conference (WWW) (2016),
pp. 483-493.

Facroro, G. Clustering in complex directed networks. Phys. Rev. E 76 (Aug 2007),
026107.

FausT, K. A puzzle concerning triads in social networks: Graph constraints and
the triad census. Social Networks 32, 3 (2010), 221-233.

GONEN, M., AND SHAVITT, Y. Approximating the number of network motifs.
Internet Mathematics 6, 3 (2009), 349-372.

HoCEVAR, T., DEMSAR, J., ET AL. Computation of graphlet orbits for nodes and
edges in sparse graphs. Journ. Stat. Soft 71 (2016).

HoLLAND, P., AND LEINHARDT, S. A method for detecting structure in sociometric
data. American Journal of Sociology 76 (1970), 492-513.

HormozpIARL, F., BERENBRINK, P., PrRULj, N., AND SAHINALP, S. C. Not all scale-
free networks are born equal: The role of the seed graph in ppi network evolution.
PLoS Computational Biology 118 (2007).

[22] Jua, M., SESHADHRI, C., AND PINAR, A. Path sampling: A fast and provable

[23]

[24]

[25]

[26]

method for estimating 4-vertex subgraph counts. In The Web Conference (WWW)
(2015).

LESKOVEG, J., AND KREVL, A. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

MELCKENBEECK, L., AUDENAERT, P., COLLE, D., AND PickaVET, M. Efficiently
counting all orbits of graphlets of any order in a graph using autogenerated
equations. Bioinformatics 34, 8 (2018), 1372-1380.

MELCKENBEECK, L., AUDENAERT, P., MICHOEL, T., COLLE, D., AND PICKAVET, M. An
algorithm to automatically generate the combinatorial orbit counting equations.
PL0oS ONE 11, 1 (01 2016), 1-19.

O’CALLAGHAN, D., HARRIGAN, M., CARTHY, ]., AND CUNNINGHAM, P. Identifying
discriminating network motifs in youtube spam. arXiv preprint arXiv:1202.5216

455

&
2

[40]

[41]

[42]

[43

(44

[46

[47

(48]

[49]

WSDM ’20, February 3-7, 2020, Houston, TX, USA

(2012).

ORTMANN, M., AND BrANDEs, U. Efficient orbit-aware triad and quad census in
directed and undirected graphs. Applied network science 2, 1 (2017), 13.
PASHANASANGI, N., AND SESHADHRI, C. Efficiently counting vertex orbits of all
5-vertex subgraphs, by evoke. arXiv preprint arXiv:1911.10616 (2019).

PINAR, A., SESHADHRI, C., AND VIsHAL, V. Escape: Efficiently counting all 5-vertex
subgraphs. In The Web Conference (WWW) (2017), International World Wide
Web Conferences Steering Committee, pp. 1431-1440.

PORTEs, A. Social capital: Its origins and applications in modern sociology. Annual
Review of Sociology 24, 1 (1998), 1-24.

Przurj, N. Biological network comparison using graphlet degree distribution.
Bioinformatics 23, 2 (2007), 177-183.

Przuly, N., CORNEIL, D. G., AND JURisicA, I. Modeling interactome: scale-free or
geometric?. Bioinformatics 20, 18 (2004), 3508-3515.

Rosst, R. A, AND AHMED, N. K. The network data repository with interactive
graph analytics and visualization. In AAAT (2015).

Rosst, R. A., AHMED, N. K., CARRANZA, A., ARBOUR, D., Rao, A., Kim, S., AND

Kom, E. Heterogeneous network motifs. arXiv preprint arXiv:1901.10026 (2019).
RotaBl, R., KAMATH, K., KLEINBERG, J. M., AND SHARMA, A. Detecting strong ties

using network motifs. In The Web Conference (WWW) (2017), pp. 983-992.
SARIYUCE, A. E., SESHADHRI, C., PINAR, A., AND CATALYUREK, U. V. Finding
the hierarchy of dense subgraphs using nucleus decompositions. In The Web
Conference (WWW) (2015), pp. 927-937.

SESHADHRI, C., AND TIRTHAPURA, S. Scalable subgraph counting: The methods
behind the madness: WWW 2019 tutorial. In Proceedings of the Web Conference
(WWW) (2019).

SHERVASHIDZE, N., VISHWANATHAN, S. V. N., PETRI, T., MEHLHORN, K., AND
BorGwaRDT, K. M. Efficient graphlet kernels for large graph comparison. In
AISTATS (2009), pp. 488-495.

SoN, S., Kang, A., Kim, H., Kwon, T., PARK, J., AND Kim, H. Analysis of context
dependence in social interaction networks of a massively multiplayer online
role-playing game. PLoS ONE 7, 4 (04 2012), e33918.

SzeLL, M., AND THURNER, S. Measuring social dynamics in a massive multiplayer
online game. Social Networks 32 (2010), 313-329.

TANG, J., ZHANG, J., Yao, L., L1, J., ZHANG, L., AND Su, Z. Arnetminer: extraction
and mining of academic social networks. In Conference on Knowledge Data and
Discovery (KDD) (2008), ACM, pp. 990-998.

TsouRAKAKIS, C. E. The k-clique densest subgraph problem. In The Web Confer-
ence (WWW) (2015), pp. 1122-1132.

TsourAKAKIS, C. E., PACHOCKI, J., AND MITZENMACHER, M. Scalable motif-aware
graph clustering. In The Web Conference (WWW) (2017), pp. 1451-1460.
UGANDER, J., BACKSTROM, L., AND KLEINBERG, J. M. Subgraph frequencies: map-
ping the empirical and extremal geography of large graph collections. In The
Web Conference (WWW) (2013), pp. 1307-1318.

WANG, P, ZHAO, J., ZHANG, X,, L1, Z., CHENG, ]., Lut, J. C. S., TowsLEyY, D., Tao,
J., AND GUAN, X. MOSS-5: A fast method of approximating counts of 5-node
graphlets in large graphs. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 30, 1 (2018), 73-86.

WELLES, B., VAN DEVENDER, A., AND CONTRACTOR, N. Is a friend a friend?:
Investigating the structure of friendship networks in virtual worlds. In CHI-EA’10
(2010), pp. 4027-4032.

WikIMEDIA FounpATION. Wikimedia downloads. http://dumps.wikimedia.org/,
January 2010.

Yin, H., BENsON, A. R., AND LESKOVEC, ]J. Higher-order clustering in networks.
Phys. Rev. E 97 (2018), 052306.

YiN, H., BENsON, A. R., AND LEskOVEC, J. The local closure coefficient: A new
perspective on network clustering. In ACM International Conference on Web
Search and Data Mining (WSDM) (2019), pp. 303-311.



	Abstract
	1 Introduction
	1.1 Problem Description
	1.2 Main Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Main theorem

	3 Main ideas
	4 The cutting framework for orbits
	5 Getting orbit counts
	6 Experimental Results
	Acknowledgments
	References

